3.52 \(\int \frac{\log (c (a+b \sqrt{x})^p)}{x^3} \, dx\)

Optimal. Leaf size=100 \[ -\frac{b^3 p}{2 a^3 \sqrt{x}}+\frac{b^2 p}{4 a^2 x}+\frac{b^4 p \log \left (a+b \sqrt{x}\right )}{2 a^4}-\frac{b^4 p \log (x)}{4 a^4}-\frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{2 x^2}-\frac{b p}{6 a x^{3/2}} \]

[Out]

-(b*p)/(6*a*x^(3/2)) + (b^2*p)/(4*a^2*x) - (b^3*p)/(2*a^3*Sqrt[x]) + (b^4*p*Log[a + b*Sqrt[x]])/(2*a^4) - Log[
c*(a + b*Sqrt[x])^p]/(2*x^2) - (b^4*p*Log[x])/(4*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.0632133, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {2454, 2395, 44} \[ -\frac{b^3 p}{2 a^3 \sqrt{x}}+\frac{b^2 p}{4 a^2 x}+\frac{b^4 p \log \left (a+b \sqrt{x}\right )}{2 a^4}-\frac{b^4 p \log (x)}{4 a^4}-\frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{2 x^2}-\frac{b p}{6 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Log[c*(a + b*Sqrt[x])^p]/x^3,x]

[Out]

-(b*p)/(6*a*x^(3/2)) + (b^2*p)/(4*a^2*x) - (b^3*p)/(2*a^3*Sqrt[x]) + (b^4*p*Log[a + b*Sqrt[x]])/(2*a^4) - Log[
c*(a + b*Sqrt[x])^p]/(2*x^2) - (b^4*p*Log[x])/(4*a^4)

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{x^3} \, dx &=2 \operatorname{Subst}\left (\int \frac{\log \left (c (a+b x)^p\right )}{x^5} \, dx,x,\sqrt{x}\right )\\ &=-\frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{2 x^2}+\frac{1}{2} (b p) \operatorname{Subst}\left (\int \frac{1}{x^4 (a+b x)} \, dx,x,\sqrt{x}\right )\\ &=-\frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{2 x^2}+\frac{1}{2} (b p) \operatorname{Subst}\left (\int \left (\frac{1}{a x^4}-\frac{b}{a^2 x^3}+\frac{b^2}{a^3 x^2}-\frac{b^3}{a^4 x}+\frac{b^4}{a^4 (a+b x)}\right ) \, dx,x,\sqrt{x}\right )\\ &=-\frac{b p}{6 a x^{3/2}}+\frac{b^2 p}{4 a^2 x}-\frac{b^3 p}{2 a^3 \sqrt{x}}+\frac{b^4 p \log \left (a+b \sqrt{x}\right )}{2 a^4}-\frac{\log \left (c \left (a+b \sqrt{x}\right )^p\right )}{2 x^2}-\frac{b^4 p \log (x)}{4 a^4}\\ \end{align*}

Mathematica [A]  time = 0.0436651, size = 90, normalized size = 0.9 \[ \frac{a b p \sqrt{x} \left (-2 a^2+3 a b \sqrt{x}-6 b^2 x\right )-6 a^4 \log \left (c \left (a+b \sqrt{x}\right )^p\right )+6 b^4 p x^2 \log \left (a+b \sqrt{x}\right )-3 b^4 p x^2 \log (x)}{12 a^4 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(a + b*Sqrt[x])^p]/x^3,x]

[Out]

(a*b*p*Sqrt[x]*(-2*a^2 + 3*a*b*Sqrt[x] - 6*b^2*x) + 6*b^4*p*x^2*Log[a + b*Sqrt[x]] - 6*a^4*Log[c*(a + b*Sqrt[x
])^p] - 3*b^4*p*x^2*Log[x])/(12*a^4*x^2)

________________________________________________________________________________________

Maple [F]  time = 0.27, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{3}}\ln \left ( c \left ( a+b\sqrt{x} \right ) ^{p} \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(a+b*x^(1/2))^p)/x^3,x)

[Out]

int(ln(c*(a+b*x^(1/2))^p)/x^3,x)

________________________________________________________________________________________

Maxima [A]  time = 1.06173, size = 103, normalized size = 1.03 \begin{align*} \frac{1}{12} \, b p{\left (\frac{6 \, b^{3} \log \left (b \sqrt{x} + a\right )}{a^{4}} - \frac{3 \, b^{3} \log \left (x\right )}{a^{4}} - \frac{6 \, b^{2} x - 3 \, a b \sqrt{x} + 2 \, a^{2}}{a^{3} x^{\frac{3}{2}}}\right )} - \frac{\log \left ({\left (b \sqrt{x} + a\right )}^{p} c\right )}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(a+b*x^(1/2))^p)/x^3,x, algorithm="maxima")

[Out]

1/12*b*p*(6*b^3*log(b*sqrt(x) + a)/a^4 - 3*b^3*log(x)/a^4 - (6*b^2*x - 3*a*b*sqrt(x) + 2*a^2)/(a^3*x^(3/2))) -
 1/2*log((b*sqrt(x) + a)^p*c)/x^2

________________________________________________________________________________________

Fricas [A]  time = 2.20647, size = 208, normalized size = 2.08 \begin{align*} -\frac{6 \, b^{4} p x^{2} \log \left (\sqrt{x}\right ) - 3 \, a^{2} b^{2} p x + 6 \, a^{4} \log \left (c\right ) - 6 \,{\left (b^{4} p x^{2} - a^{4} p\right )} \log \left (b \sqrt{x} + a\right ) + 2 \,{\left (3 \, a b^{3} p x + a^{3} b p\right )} \sqrt{x}}{12 \, a^{4} x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(a+b*x^(1/2))^p)/x^3,x, algorithm="fricas")

[Out]

-1/12*(6*b^4*p*x^2*log(sqrt(x)) - 3*a^2*b^2*p*x + 6*a^4*log(c) - 6*(b^4*p*x^2 - a^4*p)*log(b*sqrt(x) + a) + 2*
(3*a*b^3*p*x + a^3*b*p)*sqrt(x))/(a^4*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(a+b*x**(1/2))**p)/x**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.30011, size = 313, normalized size = 3.13 \begin{align*} -\frac{\frac{6 \, b^{5} p \log \left (b \sqrt{x} + a\right )}{{\left (b \sqrt{x} + a\right )}^{4} - 4 \,{\left (b \sqrt{x} + a\right )}^{3} a + 6 \,{\left (b \sqrt{x} + a\right )}^{2} a^{2} - 4 \,{\left (b \sqrt{x} + a\right )} a^{3} + a^{4}} - \frac{6 \, b^{5} p \log \left (b \sqrt{x} + a\right )}{a^{4}} + \frac{6 \, b^{5} p \log \left (b \sqrt{x}\right )}{a^{4}} + \frac{6 \,{\left (b \sqrt{x} + a\right )}^{3} b^{5} p - 21 \,{\left (b \sqrt{x} + a\right )}^{2} a b^{5} p + 26 \,{\left (b \sqrt{x} + a\right )} a^{2} b^{5} p - 11 \, a^{3} b^{5} p + 6 \, a^{3} b^{5} \log \left (c\right )}{{\left (b \sqrt{x} + a\right )}^{4} a^{3} - 4 \,{\left (b \sqrt{x} + a\right )}^{3} a^{4} + 6 \,{\left (b \sqrt{x} + a\right )}^{2} a^{5} - 4 \,{\left (b \sqrt{x} + a\right )} a^{6} + a^{7}}}{12 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(a+b*x^(1/2))^p)/x^3,x, algorithm="giac")

[Out]

-1/12*(6*b^5*p*log(b*sqrt(x) + a)/((b*sqrt(x) + a)^4 - 4*(b*sqrt(x) + a)^3*a + 6*(b*sqrt(x) + a)^2*a^2 - 4*(b*
sqrt(x) + a)*a^3 + a^4) - 6*b^5*p*log(b*sqrt(x) + a)/a^4 + 6*b^5*p*log(b*sqrt(x))/a^4 + (6*(b*sqrt(x) + a)^3*b
^5*p - 21*(b*sqrt(x) + a)^2*a*b^5*p + 26*(b*sqrt(x) + a)*a^2*b^5*p - 11*a^3*b^5*p + 6*a^3*b^5*log(c))/((b*sqrt
(x) + a)^4*a^3 - 4*(b*sqrt(x) + a)^3*a^4 + 6*(b*sqrt(x) + a)^2*a^5 - 4*(b*sqrt(x) + a)*a^6 + a^7))/b